173 research outputs found

    A robust adaptive wavelet-based method for classification of meningioma histology images

    Get PDF
    Intra-class variability in the texture of samples is an important problem in the domain of histological image classification. This issue is inherent to the field due to the high complexity of histology image data. A technique that provides good results in one trial may fail in another when the test and training data are changed and therefore, the technique needs to be adapted for intra-class texture variation. In this paper, we present a novel wavelet based multiresolution analysis approach to meningioma subtype classification in response to the challenge of data variation.We analyze the stability of Adaptive Discriminant Wavelet Packet Transform (ADWPT) and present a solution to the issue of variation in the ADWPT decomposition when texture in data changes. A feature selection approach is proposed that provides high classification accuracy

    TICAL - a web-tool for multivariate image clustering and data topology preserving visualization

    Get PDF
    In life science research bioimaging is often used to study two kinds of features in a sample simultaneously: morphology and co-location of molecular components. While bioimaging technology is rapidly proposing and improving new multidimensional imaging platforms, bioimage informatics has to keep pace in order to develop algorithmic approaches to support biology experts in the complex task of data analysis. One particular problem is the availability and applicability of sophisticated image analysis algorithms via the web so different users can apply the same algorithms to their data (sometimes even to the same data to get the same results) and independently from her/his whereabouts and from the technical features of her/his computer. In this paper we describe TICAL, a visual data mining approach to multivariate microscopy analysis which can be applied fully through the web.We describe the algorithmic approach, the software concept and present results obtained for different example images

    DELPHI - fast and adaptive computational laser point detection and visual footprint quantification for arbitrary underwater image collections

    Get PDF
    Marine researchers continue to create large quantities of benthic images e.g., using AUVs (Autonomous Underwater Vehicles). In order to quantify the size of sessile objects in the images, a pixel-to-centimeter ratio is required for each image, often indirectly provided through a geometric laser point (LP) pattern, projected onto the seafloor. Manual annotation of these LPs in all images is too time-consuming and thus infeasible for nowadays data volumes. Because of the technical evolution of camera rigs, the LP's geometrical layout and color features vary for different expeditions and projects. This makes the application of one algorithm, tuned to a strictly defined LP pattern, also ineffective. Here we present the web-tool DELPHI, that efficiently learns the LP layout for one image transect/collection from just a small number of hand labeled LPs and applies this layout model to the rest of the data. The efficiency in adapting to new data allows to compute the LPs and the pixel-to-centimeter ratio fully automatic and with high accuracy. DELPHI is applied to two real-world examples and shows clear improvements regarding reduction of tuning effort for new LP patterns as well as increasing detection performance

    SOM-based Peptide Prototyping for Mass Spectrometry Peak Intensity Prediction

    Get PDF
    In todays bioinformatics, Mass spectrometry (MS) is the key technique for the identification of proteins. A prediction of spectrum peak intensities from pre computed molecular features would pave the way to better understanding of spectrometry data and improved spectrum evaluation. We propose a neural network architecture of Local Linear Map (LLM)-type based on Self-Organizing Maps (SOMs) for peptide prototyping and learning locally tuned regression functions for peak intensity prediction in MALDI-TOF mass spectra. We obtain results comparable to those obtained by nu-Support Vector Regression and show how the SOM learning architecture provides a basis for peptide feature profiling and visualisation

    Gear-Induced Concept Drift in Marine Images and Its Effect on Deep Learning Classification

    Get PDF
    In marine research, image data sets from the same area but collected at different times allow seafloor fauna communities to be monitored over time. However, ongoing technological developments have led to the use of different imaging systems and deployment strategies. Thus, instances of the same class exhibit slightly shifted visual features in images taken at slightly different locations or with different gear. These shifts are referred to as concept drift in the domains computational image analysis and machine learning as this phenomenon poses particular challenges for these fields. In this paper, we analyse four different data sets from an area in the Peru Basin and show how changes in imaging parameters affect the classification of 12 megafauna morphotypes with a 34-layer ResNet. Images were captured using the ocean floor observation system, a traditional sled-based system, or an autonomous underwater vehicle, which is used as an imaging platform capable of surveying larger regions. ResNet applied on separate individual data sets, i.e., without concept drift, showed that changing object distance was less important than the amount of training data. The results for the image data acquired with the ocean floor observation system showed higher performance values than data collected with the autonomous underwater vehicle. The results from this concept drift studies indicate that collecting image data from many dives with slightly different gear may result in training data well-suited for learning taxonomic classification tasks and that data volume can compensate for light concept drift

    A data science approach for multi-sensor marine observatory data monitoring cold water corals (Paragorgia arborea) in two campaigns

    Get PDF
    Fixed underwater observatories (FUO), equipped with digital cameras and other sensors, become more commonly used to record different kinds of time series data for marine habitat monitoring. With increasing numbers of campaigns, numbers of sensors and campaign time, the volume and heterogeneity of the data, ranging from simple temperature time series to series of HD images or video call for new data science approaches to analyze the data. While some works have been published on the analysis of data from one campaign, we address the problem of analyzing time series data from two consecutive monitoring campaigns (starting late 2017 and late 2018) in the same habitat. While the data from campaigns in two separate years provide an interesting basis for marine biology research, it also presents new data science challenges, like the the marine image analysis in data form more than one campaign. In this paper, we analyze the polyp activity of two Paragorgia arborea cold water coral (CWC) colonies using FUO data collected from November 2017 to June 2018 and from December 2018 to April 2019. We successfully apply convolutional neural networks (CNN) for the segmentation and classification of the coral and the polyp activities. The result polyp activity data alone showed interesting temporal patterns with differences and similarities between the two time periods. A one month “sleeping” period in spring with almost no activity was observed in both coral colonies, but with a shift of approximately one month. A time series prediction experiment allowed us to predict the polyp activity from the non-image sensor data using recurrent neural networks (RNN). The results pave a way to a new multi-sensor monitoring strategy for Paragorgia arborea behaviour.publishedVersio

    SOM-based Peptide Prototyping for Mass Spectrometry Peak Intensity Prediction

    Get PDF
    In todays bioinformatics, Mass spectrometry (MS) is the key technique for the identification of proteins. A prediction of spectrum peak intensities from pre computed molecular features would pave the way to better understanding of spectrometry data and improved spectrum evaluation. We propose a neural network architecture of Local Linear Map (LLM)-type based on Self-Organizing Maps (SOMs) for peptide prototyping and learning locally tuned regression functions for peak intensity prediction in MALDI-TOF mass spectra. We obtain results comparable to those obtained by nu-Support Vector Regression and show how the SOM learning architecture provides a basis for peptide feature profiling and visualisation

    GISMO—gene identification using a support vector machine for ORF classification

    Get PDF
    We present the novel prokaryotic gene finder GISMO, which combines searches for protein family domains with composition-based classification based on a support vector machine. GISMO is highly accurate; exhibiting high sensitivity and specificity in gene identification. We found that it performs well for complete prokaryotic chromosomes, irrespective of their GC content, and also for plasmids as short as 10 kb, short genes and for genes with atypical sequence composition. Using GISMO, we found several thousand new predictions for the published genomes that are supported by extrinsic evidence, which strongly suggest that these are very likely biologically active genes. The source code for GISMO is freely available under the GPL license

    Robust normalization protocols for multiplexed fluorescence bioimage analysis

    Get PDF
    study of mapping and interaction of co-localized proteins at a sub-cellular level is important for understanding complex biological phenomena. One of the recent techniques to map co-localized proteins is to use the standard immuno-fluorescence microscopy in a cyclic manner (Nat Biotechnol 24:1270–8, 2006; Proc Natl Acad Sci 110:11982–7, 2013). Unfortunately, these techniques suffer from variability in intensity and positioning of signals from protein markers within a run and across different runs. Therefore, it is necessary to standardize protocols for preprocessing of the multiplexed bioimaging (MBI) data from multiple runs to a comparable scale before any further analysis can be performed on the data. In this paper, we compare various normalization protocols and propose on the basis of the obtained results, a robust normalization technique that produces consistent results on the MBI data collected from different runs using the Toponome Imaging System (TIS). Normalization results produced by the proposed method on a sample TIS data set for colorectal cancer patients were ranked favorably by two pathologists and two biologists. We show that the proposed method produces higher between class Kullback-Leibler (KL) divergence and lower within class KL divergence on a distribution of cell phenotypes from colorectal cancer and histologically normal samples
    corecore